Haynes 242

Haynes 242

Nickel (Ni) - 65 Balance
Chromium (Cr) - 8 Median
(7.0 Min - 9.0 Max)
Molybdenum (Mo) - 25 Median
(24.0 Min - 26.0 Max)
Iron (Fe) - 2 Max
Cobalt (Co) - 1 Max
Other

Key

Nickel
Copper
Chromium
Aluminum
Molybdenum
Iron
Titanium
Manganese
Cobalt
Other
  • Nickel (Ni) 65 Balance
  • Chromium (Cr) 8 Median
    (7.0 Min - 9.0 Max)
  • Aluminum Al .5 Max
  • Molybdenum (Mo) 25 Median
    (24.0 Min - 26.0 Max)
  • Iron (Fe) 2 Max
  • Manganese (Mn) .8 Max
  • Cobalt (Co) 1 Max
  • Carbon (C) .03 Max
  • Silicon (Si) .8 Max
  • Boron (B) .006 Max

UNS N10242

Haynes® 242® alloy (UNS N10242) is an age-hardened nickel-molybdenum chromium alloy which derives its strength from a long-range ordering reaction upon aging. It has tensile and creep strength properties up to 1300°F (705°C) which are as much as double those for solid solution strengthened alloys, but with high ductility in the aged condition. The thermal expansion characteristics of Haynes® 242® alloy are much lower than those for most other alloys, and it has very good oxidation resistance up to 1500°F (815°C). Other attractive features include excellent low cycle fatigue properties, very good thermal stability, and resistance to high-temperature fluorine and fluoride environments.

Haynes® 242® alloy combines properties that make it ideally suited for a variety of component applications in the aerospace industry. It will be used for seal rings, containment rings, duct segments, casings, fasteners, rocket nozzles, pumps, and many others. In the chemical process industry, Haynes® 242® alloy will find use in high-temperature hydrofluoric acid vapor-containing processes as a consequence of its excellent resistance to that environment. The alloy also displays excellent resistance to high-temperature fluoride salt mixtures. The high strength and fluorine environment-resistance of Haynes® 242® alloy has also been shown to provide for excellent service in fluoroelastomer process equipment, such as extrusion screws.

Request a Quote

Summary

  • Environment:
    Moderately Corrosive: Acids & Chemicals
  • Temperature Limit:
    1500 °F / 816 °C
  • Ultimate Tensile (Typical):
    187 ksi / 1289 mpa

Specifications & Technical Data

If your question isn’t answered below, download the Technical Data Sheet.

Specifications

  • Plate, Sheet & Strip: ASTM B434, ASME SB434
  • Rod & Bar: ASTM B573, ASME SB573
  • Seamless Pipe & Tube: ASTM B622, ASME SB622
  • Welded Pipe & Tube: ASTM B619, ASME SB619
  • Fittings: ASTM B366, ASME SB366
  • Forgings: ASTM B564, ASME SB564

Physical Properties

Physical Property Imperial Units Metric Units
Density  RT 0.327 lb/in3 RT 9.05 g/cm3
Melting Range  2350-2510°F 1290-1375°C
Electrical Resistivity RT 48.0 µohm-in RT 122.0 µohm-cm
200°F 48.5 µohm-in 100°C 123.4 µohm-cm
400°F 49.3 µohm-in 200°C 125.1 µohm-cm
600°F 50.0 µohm-in 300°C 126.7 µohm-cm
800°F 50.6 µohm-in 400°C 128.0 µohm-cm
1000°F 51.1 µohm-in 500°C 129.5 µohm-cm
1200°F 51.7 µohm-in 600°C 130.6 µohm-cm
1400°F 52.4 µohm-in 700°C 132.0 µohm-cm
1600°F 51.3 µohm-in 800°C 132.4 µohm-cm
1800°F 50.4 µohm-in 900°C 129.8 µohm-cm
1000°C 127.6 µohm-cm
Thermal Diffusivity RT 4.7 x 10-3 in2/s RT 30.5 x 10-3 cm2/s
200°F 5.1 x 10-3 in2/s 100°C 32.9 x 10-3 cm2/s
400°F 5.6 x 10-3 in2/s 200°C 35.9 x 10-3 cm2/s
600°F 6.1 x 10-3 in2/s 300°C 39.0 x 10-3 cm2/s
800°F 6.6 x 10-3 in2/s 400°C 41.9 x 10-3 cm2/s
1000°F 7.2 x 10-3 in2/s 500°C 45.0 x 10-3 cm2/s
1200°F 7.9 x 10-3 in2/s 600°C 48.1 x 10-3 cm2/s
1400°F 7.2 x 10-3 in2/s 700°C 51.2 x 10-3 cm2/s
1600°F 7.0 x 10-3 in2/s 800°C 44.2 x 10-3 cm2/s
1800°F 7.6 x 10-3 in2/s 900°C 46.6 x 10-3 cm2/s
1000°C 49.6 x 10-3 cm2/s
Thermal Conductivity RT 75.7 Btu-in/ft2-hr-°F RT 11.3 W/m-ºC
200°F 83.6 Btu-in/ft2-hr-°F 100°C 12.6 W/m-ºC
400°F 96.1 Btu-in/ft2-hr-°F 200°C 14.2 W/m-ºC
600°F 108.5 Btu-in/ft2-hr-°F 300°C 15.9 W/m-ºC
800°F 120.9 Btu-in/ft2-hr-°F 400°C 17.5 W/m-ºC
1000°F 133.3 Btu-in/ft2-hr-°F 500°C 19.2 W/m-ºC
1200°F 145.7 Btu-in/ft2-hr-°F 600°C 20.9 W/m-ºC
1400°F 158.2 Btu-in/ft2-hr-°F 700°C 22.5 W/m-ºC
1600°F 170.6 Btu-in/ft2-hr-°F 800°C 24.2 W/m-ºC
1800°F 183.0 Btu-in/ft2-hr-°F 900°C 25.8 W/m-ºC
1000°C 27.5 W/m-ºC
Specific Heat RT 0.092 Btu/lb-°F RT 386 J/Kg-ºC
200°F 0.097 Btu/lb-°F 100°C 405 J/Kg-ºC
400°F 0.100 Btu/lb-°F 200°C 419 J/Kg-ºC
600°F 0.103 Btu/lb-°F 300°C 431 J/Kg-ºC
800°F 0.106 Btu/lb-°F 400°C 439 J/Kg-ºC
1000°F 0.110 Btu/lb-°F 500°C 451 J/Kg-ºC
1200°F 0.118 Btu/lb-°F 600°C 470 J/Kg-ºC
1400°F 0.144 Btu/lb-°F 700°C 595 J/Kg-ºC
1600°F 0.146 Btu/lb-°F 800°C 605 J/Kg-ºC
1800°F 0.150 Btu/lb-°F 900°C 610 J/Kg-ºC
1000°C 627 J/Kg-ºC
Mean Coefficient of  Thermal Expansion 70-200°F 6.0 µin/in-°F 25-100°C 10.8 µm/m-°C
70-400°F 6.3 µin/in-°F 25-200°C 11.3 µm/m°C
70-600°F 6.5 µin/in-°F 25-300°C 11.6 µm/m-°C
70-800°F 6.7 µin/in-°F 25-400°C 11.9 µm/m-°C
70-1000°F 6.8 µin/in-°F 25-500°C 12.2 µm/m-°C
70-1100°F 6.8 µin/in-°F 25-600°C 12.3 µm/m-°C
70-1200°F 6.9 µin/in-°F 25-650°C 12.4 µm/m-°C
70-1300°F 7.2 µin/in-°F 25-700°C 13.0 µm/m-°C
70-1400°F 7.7 µin/in-°F 25-750°C 13.7 µm/m-°C
70-1600°F 8.0 µin/in-°F 25-800°C 14.0 µm/m-°C
70-1800°F 8.3 µin/in-°F 25-900°C 14.5 µm/m-°C
25-1000°C 15.0 µm/m-°C
Dynamic Modulus  of Elasticity RT 33.2 x 106 psi RT 229 GPa
200°F 32.7 x 106 psi 100°C 225 GPa
400°F 31.8 x 106 psi 200°C 219 GPa
600°F 30.8 x 106 psi 300°C 213 GPa
800°F 29.7 x 106 psi 400°C 206 GPa
1000°F 28.6 x 106 psi 500°C 199 GPa
1200°F 27.6 x 106 psi 600°C 193 GPa
1400°F 25.7 x 106 psi 700°C 185 GPa
1600°F 24.0 x 106 psi 800°C 172 GPa
1800°F 22.4 x 106 psi 900°C 163 GPa
1000°C 152 GPa

RT= Room Temperature

Tensile Properties

Bar and Rings – Annealed and Aged
Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation Reduction in Area
°F °C ksi MPa ksi MPa % %
RT RT 122.4 845 187.4 1290 33.7 45.7
200 93 110.4 760 180.7 1245 31.7 47
400 204 102.3 705 173.5 1195 33 51.8
600 316 96.5 665 168.6 1160 33.4 48.4
800 427 86.3 595 161.3 1110 37.6 45.9
1000 538 78.3 540 156.3 1080 38.3 49.9
1200 649 82.7 570 144.9 1000 33.2 41.1
1400 760 44.9 310 106.2 730 44.3 54.1
1600 871 44.8 310 72.5 500 49.7 85.1
1800 982 30.6 210 42 290 54 97.8

*RT= Room Temperature

Hot-Rolled Plate – Annealed and Aged(a)
Test Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation Reduction in Area
°F °C ksi MPa ksi MPa % %
RT RT 126 868 193 1330 36
400 204 101 696 176 1213 43 52
800 427 91 627 165 1137 45 52
1000 538 89 613 164 1130 44 51
1100 593 89 613 160 1102 44 51
1200 649 87 599 141 971 29 31
1300 704 73 503 118 813 28 30
1400 760 48 331 94 648 93 71

 

Cold-Rolled Sheet- Annealed and Aged(a)
Test Temperature Yield Strength 0.2% Offset Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
RT RT 120 827 187 1288 38
1000 538 106 730 165 1137 31
1100 593 102 703 150 1034 18
1200 649 96 661 135 930 14
1300 704 83 572 109 751 10
1400 760 57 393 92 634 98

(a)Average of two tests per heat, two heats of each product form.
Solution Annealed + Aged 1200°F-48 hr.

Cold-Reduced Sheet- As Cold-Worked and Cold-Worked Plus Aged
Test Temperature 0.2% Yield Strength Ultimate Tensile Strength Elongation
°F °C ksi MPa ksi MPa %
M.A. RT RT 65.3 450 137.6 950 47
M.A. + 20% C.W. RT RT 139.5 960 169.6 1170 20
M.A. + 40% C.W. RT RT 181.3 1250 217.9 1500 8
M.A. + Age RT RT 130 895 192 1325 32
M.A. + 20% C.W. + Age RT RT 173 1195 209.5 1445 21
M.A. + 40% C.W. + Age RT RT 219.7 1515 244.7 1685 11
M.A. + 40% C.W. + Age 1100 595 191.4 1320 201.9 1390 11
M.A. + 40% C.W. + Age 1200 649 145.9 1005 198.7 1370 8
M.A. + 40% C.W. + Age 1300 705 134.3 925 183.7 1265 11
M.A. + 40% C.W. + Age 1400 760 94.1 650 156 1075 32

RT= Room Temperature
M.A.= Solution Anneal
C.W. = Cold Work
Age = Standard aging treatment

Thermal Expansion

Mean Coefficient of Thermal Expansion

The following compares the mean coefficient of expansion for several alloys:

Alloy Mean Coefficient of Expansion from RT to Temperature
1000°F 538°C 1100°F 593°C 1200°F 649°C 1300°F 704°C 1400°F 760°C
in./in/- °F x10-6 mm/mm- °C x10-6 in./in/- °F x10-6 mm/mm- °C x10-6 in./in/- °F x10-6 mm/mm- °C x10-6 in./in/- °F x10-6 mm/mm- °C x10-6 in./in/- °F x10-6 mm/mm- °C x10-6
909 5.0 9.0 5.4 9.7 5.8 10.4 6.2 11.2 6.6 11.9
242® 6.8 12.2 6.8 12.3 7.0 12.6 7.2 13.0 7.7 13.9
B 6.7 12 6.7 12.0 6.7 12.0 6.9 12.4 7.1 12.8
N 7.3 13.1 7.4 13.3 7.5 13.5 7.6 13.7 7.8 14.0
S 7.4 13.2 7.5 13.5 7.6 13.7 7.8 14.0 8.0 14.4
X 8.4 15.1 8.5 15.3 8.6 15.5 8.6 15.7 8.8 15.8

Creep-Rupture Strength

242® Plate, Age-Hardened
Temperature Creep Approximate Initial Stress to Produce Specified Creep in
10 Hours 100 Hours 1,000 Hours 10,000 Hours
°F °C % ksi MPa ksi MPa ksi MPa ksi MPa
1000 538 0.5
1
R 153 1055 138 952 122 841 109 752
1100 593 0.5 75 517
1 79 545
R 126 869 112 772 100 690 85 586
1200 649 0.5 82 565 62 427 38 262
1 85 586 66 455 42 290
R 105* 724* 91 627 75 517 48 331
1300 704 0.5 72 496 48 331 33 228 13* 90*
1 75 517 53 365 37 255 17* 117*
R 87* 600* 66 455 44 303 25 172
1400 760 0.5 24 165 12 83
1 27 186 15 103 8 55
R 46 317 29 200 18 124

*Significant extrapolation

242® Sheet, Age-Hardened
Temperature Creep Approximate Initial Stress to Produce Specified Creep in
10 Hours 100 Hours 1,000 Hours
°F °C % ksi MPa ksi MPa ksi MPa
1000 538 0.5
1
R 133 917 125 862
1100 593 0.5 97 669
1 102 703
R 117 807 110 758
1200 649 0.5 79 545 58 400
1 82 565 62 427
R 110* 758* 90 621 69 476
1300 704 0.5 59 407 44 303 33 228
1 64 441 47 324 35 241
R 80 552 57 393 41 283
1400 760 0.5 21 145 12* 83*
1 24 165 14 97
R 41 283 25 172 15 103

Impact Strength

Product Form Condition Test Temperature Impact Strength
°F °C ft-lbf J
Plate Solution Annealed RT RT 198 268
Plate Solution Annealed -320 -196 150 203
Bar Solution Annealed RT RT 401 544
Bar Solution Annealed -320 -196 343 465
Plate Age Hardened* RT RT 91 123
Ring Annealed + Age Hardened* RT RT 51 69

*Aged hardened: 1200°F (649°C) / 24 h / Air Cool

Thermal Stability

Room-Temperature Properties after Exposure at 1200°F (649°C)*
Exposure Time 0.2% Yield Strength Ultimate Tensile Strength Elongation Reduction of Area Charpy V-Notch
hours ksi MPa ksi MPa % % ft.-lbs. J
0 110 758 179 1234 39 44 66 89
1000 119 820 194 1338 28 38 41 56
4000 122 841 196 1351 25 37 31 42
8000 121 834 193 1331 24 39 26 35

*Samples age hardened 1200°F (649°C) 24 h. Duplicate tests.

Oxidation Resistance

Comparative Oxidation-Resistance in Flowing Air at 1500°F (815°C) for 1008 Hours*
Alloy Metal Loss Average Metal Affected
mils µm mils µm
242®  0.5  13
0 0 0.5 13
0.1 3 1.1 28
0.4 10 1.2 30
7.2 183 8.2 208
909  4.4 112 19.4 493

*Coupons exposed to flowing air at a velocity of 7.0 feet/minute (2.1m/minute) past the samples. Samples cycled to room temperature once-a-day.

Comparative Oxidation Resistance in Flowing Air, 10 Months (7200 h), Cycled Every Two Months**
Alloy 800°F (427°C) 1000°F (538°C) 1200°F (649°C)
Metal Loss Average Metal Affected Metal Loss Average Metal Affected Metal Loss Average Metal Affected
mils μm mils μm mils μm mils μm mils μm mils μm
718  0 0 0 0 0 0 0.1 3 0 0 0.2 5
242®  0.1  0.3  8
263  0 0 0 0 0 0 0.1 3 0 0 0.3 8

** Coupons exposed to flowing air at a velocity of 7.0 feet/minute (2.1m/minute) past the samples. Samples cycled to room temperature once every two months.

Comparative Burner Rig Oxidation-Resistance at 1400°F (760°C) for 500 Hours***

Alloy Metal Loss Average Metal Affected
mils µm mils µm
0.7 18 0.8 20
242®  1.1  28  1.2  30
1.8 46 2.6 66
909  0.3 8 10.8 275

***Burner rig oxidation tests were conducted by exposing samples 3/8 inch x 2.5 inches x thickness (9mm x 64mm x thickness), in a rotating holder, to the products of combustion of No. 2 fuel oil burned at a ratio of air to fuel of about 50:1. (Gas velocity was about 0.3 mach). Samples were automatically removed from the gas stream every 30 minutes and fan-cooled to near ambient temperature and then reinserted into the flame tunnel.

Resistance to High-Temperature Fluoride Environments

Comparative Resistance to 70% HF at 1670°F (910°C) for 136 Hours
Alloy Thickness Loss
mils mm
242®  12.6  0.3
15.8 0.4
15.8 0.4
625  47.2 1.2
230®  70.9 1.8
C-22®  78.7 2
600  141.7 3.6

Resistance to Molten Salt

Comparative Resistance to Molten Flux* at 1250°F Partially Submerged for 1200 hours
Alloy Corrosion Rate
mils / 24 h µm / 24 h
242®  0.5  13
0.6 15
C-276  0.9 23

*Flux consisted of boric acid, boron elemental, potassium fluoride, potassium tetraborate tetrahydrate, potassium fluoborate, potassium hydrogen difluoride, and potassium pentaborate.

Resistance to Nitriding

Comparative Resistance to Flowing Ammonia at 1800°F (980°C) for 168 hours
Alloy Nitrogen Absorption (mg/cm2)
214®  0.3
242®  0.7
600  0.9
230®  1.4
3.2
800H  4.0
316 SS  6.0
304 SS 7.3
310 SS 7.7

Resistance to Salt Spray Corrosion

Comparative Resistance to Sodium-Sulfate-Containing Sea Water Environment* at 1200°F (650°C)
Alloy Metal Loss Maximum Metal Affected
mils µm mils µm
0.1 2.5 0.2 5.1
242®  0.15  3.8  0.3  7.6
0.2 5.1 0.3 7.6
909  0.4 10.2 0.2 30.5

*Tests were performed by heating specimens to 300°F (150°C), spraying with a simulated seawater solution, cooling and storing at room temperature for a week, heating to 1200°F (650°C) for 20 hours in still air; cooling to room temperature, heating and spraying again at 300°F (150°C), and storing at room temperature for a week.

Aqueous Corrosion Resistance

Corrosive  Media Temperature Exposure Corrosion Rate, Mils/year (mm/year)
242® B-2 C-22® N
°F °C h mils mm mils mm mils mm mils mm
5% HF 175 79 24 14  0.36  12 0.3 25 0.64 20 0.51
48% HF 175 79 24 32  0.81  25 0.64 27 0.69 31 0.79
70% HF 125 52 24 35  0.89  66 1.68 32 0.81 48 1.22
10% HC Boiling 24 22  0.56  7 0.18 400 10.16 204 5.18
20% HCl Boiling 24 41  1.04  15 0.38 380 9.65
55% H3PO4 Boiling 24 0.08  4 0.1 9 0.23
85% H3PO4 Boiling 24 0.1  4 0.1 120 3.05
10% H2SO4 Boiling 24 0.05  2 0.05 11 0.28 46 1.17
50% H2SO4 Boiling 24 0.13  1 0.03 390 9.91
99% ACETIC Boiling 24 <1  <0.03  1 0.03 Nil

Industries We Serve

Nickel Systems provides high quality exotic grade materials that hold up in the toughest, most severe heat and corrosive environments. With our large inventory of specialty fasteners in stock, we are always ready to answer the call to serve the most challenging applications.

Contact Us Today

Contact Experts for Your High Nickel Alloy Fasteners

Contact Us